Integral dan Turunan November 2014
A. Turunan
Grafik Fungsi Turunan |
Secara matematis, turunan fungsi ƒ(x) terhadap variabel x adalah ƒ′ yang nilainya pada titik x adalah:
- ,
Apabila z = x + h, h = x - z, dan h mendekati 0 jika dan hanya jika z mendekati x, maka definisi turunan di atas dapat pula kita tulis sebagai:
Sebagai contoh, untuk menemukan gradien dari fungsi f(x) = x2 pada titik (3,9):
Ilmu yang mempelajari definisi, properti, dan aplikasi dari turunan atau kemiringan dari sebuah grafik disebut kalkulus diferensial
Garis singgung sebagai limit dari garis sekan |
Notasi pendiferensialan
Terdapat berbagai macam notasi matematika yang dapat digunakan digunakan untuk menyatakan turunan, meliputi notasi Leibniz, notasi Lagrange, notasi Newton, dan notasi Euler.Notasi Leibniz diperkenalkan oleh Gottfried Leibniz dan merupakan salah satu notasi yang paling awal digunakan. Ia sering digunakan terutama ketika hubungan antar y = ƒ(x) dipandang sebagai hubungan fungsional antara variabel bebas dengan variabel terikat. Turunan dari fungsi tersebut terhadap x ditulis sebagai:
- ataupun
Notasi Newton, juga disebut sebagai notasi titik, menempatkan titik di atas fungsi untuk menandakan turunan. Apabila y = ƒ(t), maka mewakili turunan y terhadap t. Notasi ini hampir secara eksklusif digunakan untuk melambangkan turunan terhadap waktu. Notasi ini sering terlihat dalam bidang fisika dan bidang matematika yang berhubungan dengan fisika.
Notasi Euler menggunakan operator diferensial D yang diterapkan pada fungsi ƒ untuk memberikan turunan pertamanya Df. Apabila y = ƒ(x) adalah variabel terikat, maka sering kali x dilekatkan pada D untuk mengklarifikasikan keterbebasan variabel x. Notasi Euler kemudian ditulis sebagai:
- atau .
Notasi Leibniz | Notasi Lagrange | Notasi Newton | Notasi Euler | |
---|---|---|---|---|
Turunan ƒ(x) terhadap x | ƒ′(x) | dengan y = ƒ(x) |
B. Integral
Grafik Fungsi Integral |
Integral tertentu
Diberikan suatu fungsi ƒ bervariabel real x dan interval antara [a, b] pada garis real, integral tertentu:Pada notasi integral di atas: a adalah batas bawah dan b adalah batas atas yang menentukan domain pengintegralan, ƒ adalah integran yang akan dievaluasi terhadap x pada interval [a,b], dan dx adalah variabel pengintegralan.
Seiring dengan semakin banyaknya subinterval dan semakin sempitnya lebar subinterval yang diambil, luas keseluruhan batangan akan semakin mendekati luas daerah di bawah kurva. |
Secara cermat, definisi integral tertentu sebagai limit dari penjumlahan Riemann adalah:
Diberikan ƒ(x) sebagai fungsi yang terdefinisikan pada interval tertutup [a,b]. Kita katakan bahwa bilangan I adalah integral tertentu ƒ di sepanjang [a,b] dan bahwa I adalah limit dari penjumlahan Riemann apabila kondisi berikut dipenuhi: Untuk setiap bilangan ε > 0 apapun terdapat sebuah bilangan δ > 0 yang berkorespondensi dengannya sedemikian rupanya untuk setiap partisi di sepanjang [a,b] dengan dan pilihan ti apapun pada [xk - 1, ti], kita dapatkanSecara matematis dapat kita tuliskan:
- Contoh
Pemilihan partisi ataupun titik ti secara sembarang akan menghasilkan nilai yang sama sepanjang norma partisi tersebut mendekati nol. Apabila kita memilih partisi P membagi-bagi interval [0,b] menjadi n subinterval yang berlebar sama Δx = (b - 0)/n = b/n dan titik t'i yang dipilih adalah titik akhir kiri setiap subinterval, partisi yang kita dapatkan adalah:
- dan , sehingga:
Integral tak tentu
Manakala integral tertentu adalah sebuah bilangan yang besarnya ditentukan dengan mengambil limit penjumlahan Riemann, yang diasosiasikan dengan partisi interval tertutup yang norma partisinya mendekati nol, teorema dasar kalkulus (lihat bagian bawah) menyatakan bahwa integral tertentu sebuah fungsi kontinu dapat dihitung dengan mudah apabila kita dapat mencari antiturunan/antiderivatif fungsi tersebut.ApabilaEkspresi F(x) + C adalah antiderivatif umum ƒ dan C adalah konstanta sembarang.
Keseluruhan himpunan antiturunan/antiderivatif sebuah fungsi ƒ adalah integral tak tentu ataupun primitif dari ƒ terhadap x dan dituliskan secara matematis sebagai:
Misalkan terdapat sebuah fungsi f(x) = x2, maka integral tak tentu ataupun antiturunan dari fungsi tersebut adalah:
Teorema dasar
Teorema dasar kalkulus menyatakan bahwa turunan dan integral adalah dua operasi yang saling berlawanan. Lebih tepatnya, teorema ini menghubungkan nilai dari anti derivatif dengan integral tertentu. Karena lebih mudah menghitung sebuah anti derivatif daripada menerapkan definisi integral tertentu, teorema dasar kalkulus memberikan cara yang praktis dalam menghitung integral tertentu.Teorema dasar kalkulus menyatakan:
Jika sebuah fungsi f adalah kontinu pada interval [a,b] dan jika F adalah fungsi yang mana turunannya adalah f pada interval (a,b), makaSebagai contohnya apabila kita hendak menghitung nilai integral , daripada menggunakan definisi integral tertentu sebagai limit dari penjumlahan Riemann (lihat bagian atas), kita dapat menggunakan teorema dasar kalkulus dalam menghitung nilai integral tersebut. Anti derivatif dari fungsi adalah . Oleh sebab itu, sesuai dengan teorema dasar kalkulus, nilai dari integral tertentu adalah:
Lebih lanjut, untuk setiap x di interval (a,b),
Terima Kasih Telah Berkunjung ke Web Lowongan Kerja Resmi Terbaru ini. Anda dapat menerima Info Rekrutmen Karir Terbaru dari Perusahaan BUMN, BANK, CPNS dan Perusahaan lainnya dengan KLIK and FOLLOW Akun Google+ dibawah.